Answer Key

Chapter 6	Practice B				
Lesson 6.3	1. yes 2. no 3. no 4. yes 5. no 6. yes				
	7. $x = 6, y = 4$ 8. $x = 5, y = 75$				
	9. $x = 12, y = 7$				
	 10. Sample answer: slope AB = slope CD = -4 and slope BC = slope AD = ²/₅; so ABCD is a □ by definition. 11. Sample answer: AB = CD = √45 and BC = DA = √65 so ABCD is a □ since both pairs of opposite sides are ≅. 12. AD 13. Yes, AB DC and 				
				$\frac{1}{AD} \parallel \frac{BC}{BC}$	
			14. Statements	Reasons	
				1. $\angle AFD \cong \angle ADF$	7 1. Given
				2. $\overline{AD} \cong \overline{AF}$	2. Sides opp. $\cong \angle$ are \cong .
				3. $\overline{AF} \cong \overline{BC}$	3. Given
		4. $\overline{AD} \cong \overline{BC}$	4. Transitive Prop. of \cong		
		5. $\overline{AB} \cong \overline{CD}$	5. Given		
	6 . <i>ABCD</i> is a □.	6. If both pairs of opp.			
		sides are \cong , then quad. is a \square .			
	15.				
	Statements	Reasons			
	1. $\triangle RQP \cong \triangle ON$				
	R is midpoint				
	of \overline{MQ} .				
	2. $\overline{MR} \cong \overline{RQ}$	2. Definition of midpoint			
	3. $\overline{RQ} \cong \overline{NO}$	3. Corresp. parts of \cong			
		\triangle 's are \cong .			
	4. $\overline{MR} \cong \overline{NO}$	4 . Transitive Prop. of \cong			
	5. $\angle QRP \cong \angle NOP$	-			
	$6. \overrightarrow{MQ} \parallel \overrightarrow{NO}$	6. Alternate Interior ∠'s Converse			
	7. $\overline{MR} \parallel \overline{NO}$	7. If two lines are , segments combined within them are 			
	8. <i>MRON</i> is a □	8. If one pair of opp. sides are \parallel and \cong , then quad. is a \square .			