Unit 5 Radical Functions, Expressions, and Equations MODULE 10 Radical Functions
 LESSON 10-2

LESSON 10-1

Practice and Problem Solving: A/B

1. $f^{-1}(x)=2 \sqrt{x}$

2. $f^{-1}(x)=\sqrt{x-3}$

3. $f^{-1}(x)=\sqrt[3]{2 x}$

4. $f^{-1}(x)=\sqrt[3]{x+2}$

5. $t=\sqrt{\frac{d}{4.9}}$
6. 5.5 seconds

Practice and Problem Solving: A/B

1. $\{x \mid x \geq-4\} ;\{y \mid y \geq 0\}$

2. $\{x \mid x \geq 0\} ;\{y \mid y \geq 1\}$

3. Vertical stretch by a factor of 4 and horizontal translation 8 units left
4. Reflection across the x-axis, horizontal compression by a factor of $\frac{1}{3}$, and vertical translation 2 units up
5. $g(x)=7 \sqrt{-x}-3$
6. $g(x)=-\sqrt{2(x-2)}$
7. a. $r=\sqrt{\frac{50}{\pi}} \approx 3.99$ inches
b. If volume goes from V to $2 V$, radius must go from $r=\sqrt{\frac{V}{\pi h}}$ to $r_{\text {new }}=\sqrt{\frac{2 V}{\pi h}}=\sqrt{2} \sqrt{\frac{V}{\pi h}}=\sqrt{2} r$. So, the radius must be multiplied by $\sqrt{2}$.

Unit 5 Radical Functions, Expressions, and Equations

LESSON 10-3

Practice and Problem Solving: A/B

1. Translation 3 units to the right and 2 units up

2. Vertical compression by a factor of $\frac{1}{2}$; translation 2 units to the left and 3 units down

3. $g(x)=2 \sqrt[3]{x+1}-1$
4. $g(x)=\frac{1}{2} \sqrt[3]{x}+2$
5. $g(x)=\sqrt[3]{-(x+12)}-4$
6. $g(x)=-8 \sqrt[3]{x-11}$
