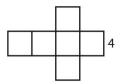
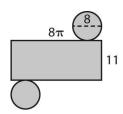
MODULE 3 Visualizing Solids

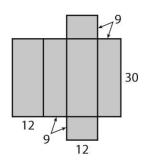
LESSON 3-1

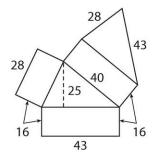

Practice and Problem Solving: A/B

- 1. none
- 2. hexagonal prism
- 3. rectangular prism
- 4. triangular prism
- 5. none
- 6. triangular pyramid (or tetrahedron)
- 7. rectangle
- 8. circle
- 9. circle
- 10. square
- 11. triangle
- 12. trapezoid
- 13. rectangle
- 14. It has the same shape as the base (is congruent or similar).
- 15. Rotate a right triangle around a line that contains one of its legs.
- 16. Rotate a half-circle around a line that contains its diameter.
- 17. Rotate a rectangle around a line that contains one of its sides.


LESSON 3-2

Practice and Problem Solving: A/B


1.96


2. 120π

3.1476

4. 2851

- 5. 62π
- 6.864
- 7. Surface area = prism surface area + cylinder lateral area Prism surface area = 2(30)(12) + 2(30)(10) + 2(10)(12) = 1560 Cylinder lateral area = 40π Surface area = $1560 + 40\pi$
- 8. Surface area = cube surface area + cylinder lateral area cylinder base area Cube surface area = $6(5^2)$ = 150 Cylinder lateral area = $2\pi(5)$ = 10π Cylinder base areas = 2π Surface area = $150 + 10\pi 2\pi$ = $150 + 8\pi$

LESSON 3-3

Practice and Problem Solving: A/B

- 1. 324π ; 576π ; 900π
- 2. 16π ; 50.4π ; 66.4π
- 3. 64; 163.2; 227.2
- 4. 35.1; 120.2; 155.3
- 5. 90π
- 6. 454.3 cm²
- 7. Base of cylinder: 4π ;

Lateral surface of cylinder: 6π ;

Slant height of cone: 2.5

Lateral surface of cone: 5π

Total: $4\pi + 6\pi + 5\pi = 15\pi$

8. Base of prism: 121

Lateral surface of prism: 880

Lateral surface of pyramid: 235.4

Total: 1236.4

LESSON 3-4

Practice and Problem Solving: A/B

- 1. 900π . $SA = 4\pi r^2 = 4\pi (15^2) = 900$
- 2. 1296π . $SA = 4\pi r^2 = 4\pi (18^2) = 1296$
- 3. 972π . $SA = 2\pi r^2 + \pi r^2 = 3\pi r^2 = 3\pi (18^2)$ = 972
- 4. $SA = 3\pi r^2 = 3\pi (5^2) = 75\pi$
- 5. It quadruples. $SA = 4\pi r^2$. If the new radius is 2r, the new surface area is $4\pi (2r)^2 = 4\pi 2^2 r^2 = 4\pi 4r^2 = 16\pi r^2$, which is 4 times as great as the original area.
- Because doubling the radius doubles its size 3 ways: left to right, front to back, top to bottom.
- 7. Surface area of hemisphere = $2\pi r^2$
 - $=2\pi(6^2)=72\pi$

Surface area of figure = $150\pi + 72\pi$

- $= 222\pi$
- 8. Surface area of hemisphere = $2\pi r^2$
 - $=2\pi(6^2)=72\pi$

Surface area of figure = 138π