MODULE 2 Coordinate Proof Using Slope and Distance

LESSON 2-1

Practice and Problem Solving: A/B

1. Yes. Possible answer: The slope of each line is 2 . Two non-vertical lines are parallel if and only if they have the same slope.
2. $\frac{3}{2}$
3. $-\frac{1}{5}$
4. $\frac{3}{2}$
5. $-\frac{1}{5}$
6. Yes. Possible answer: It is a parallelogram because it is a quadrilateral with two pairs of parallel sides.
7. 3
8. Possible answer: $(1,0)$ and $(0,-3)$ are two points on the line. slope $=\frac{0-(-3)}{1-0}=\frac{3}{1}=3$
9. 3
10. $y=3 x+7$; Possible answer: Since the slope of line m is 3 , its equation has the form $y=3 x+$ b. Substitute the coordinates $(-2,1)$ in the equation for x and y to obtain the result $b=7$.

LESSON 2-2

Practice and Problem Solving: A/B

1. Yes; Possible answer: The slopes of the lines are -4 and $\frac{1}{4}$. The product of the slopes of the lines is -1 . Two non-vertical lines are perpendicular if and only if the product of their slopes is -1 .
2. $-\frac{1}{3}$
3. undefined slope (The segment is vertical.)
4. $-\frac{1}{3}$
5. 3
6. No; Possible answer: $\overline{W X}$ and $\overline{Y Z}$ are parallel and both are perpendicular to $\overline{Z W}$. However, $\overline{X Y}$ is not parallel to $\overline{Z W}$. So, the figure is a trapezoid.
7. $-\frac{3}{2}$
8. Possible answer: $(0,3)$ and $(2,0)$ are two points on the line.
slope $=\frac{3-0}{0-2}=\frac{3}{-2}=-\frac{3}{2}$
9. $\frac{2}{3}$
10. $y=\frac{2}{3} x-3$; Possible answer: The slope, m, is $\frac{2}{3}$. The y-intercept, b, is -3 . The equation, $y=$ $m x+b$, is $y=\frac{2}{3} x-3$.

LESSON 2-3

Practice and Problem Solving: A/B

1.

2.

3. $D(4,0) ; E(6,5) ; F(2,5)$
4. $D E=\sqrt{29} ; D F=\sqrt{29}$
5. You would need to use the coordinates shown and the distance formula to show that the length of $\overline{F E}$ is half the length of $\overline{A B}$.

LESSON 2-4

Practice and Problem Solving: A/B

1. Possible answer:

2. Possible answer:

3. Possible answer: Use the slope formula to determine the slope of each side. The top and bottom segments have a slope of 0 . The segment on the left has a slope of 4 , and the segment on the right has a slope of -4 . Since exactly two sides have the same slope, the quadrilateral is a trapezoid.
4. Possible answer: $A B C D$ is a rectangle with width $A D$ and length $D C$. The area of $A B C D$ is $(A D)(D C)$ or $(4)(6)=24$ square units. By the Midpoint Formula, the coordinates of E are $\left(\frac{0+6}{2}, \frac{0+0}{2}\right)$ $=(3,0)$ and the coordinates of F are $\left(\frac{0+0}{2}, \frac{0+4}{2}\right)=(0,2)$. The x-coordinate of E is the length of rectangle DEGF, and the y-coordinate of F is the width. So the area of $D E G F$ is $(3)(2)=6$ square units.

Since $6=\frac{1}{4}(24)$, the area of rectangle $D E G F$ is one-fourth the area of rectangle $A B C D$.

LESSON 2-5

Practice and Problem Solving: A/B

1. kite; $P \approx 15.2$ units; $A=12$ units 2

2. trapezoid; $P \approx 20.3$ units; $A=21$ units 2

3. scalene triangle; $P \approx 15.2$ units; $A=7$ units 2

4. rectangle; $P \approx 14.1$ units; $A=12$ units 2

5. $P \approx 23.6$ units; $A=38$ units 2
6. $P \approx 25.1$ units; $A=34.5$ units 2
