MODULE 2 Coordinate Proof Using Slope and Distance

LESSON 2-1

Practice and Problem Solving: A/B

- 1. Yes. Possible answer: The slope of each line is 2. Two non-vertical lines are parallel if and only if they have the same slope.
- 2. $\frac{3}{2}$ 3. $-\frac{1}{5}$ 4. $\frac{3}{2}$ 5. $-\frac{1}{5}$
- 6. Yes. Possible answer: It is a parallelogram because it is a quadrilateral with two pairs of parallel sides.

7.3

8. Possible answer: (1, 0) and (0, -3) are two points on the line.

slope =
$$\frac{0 - (-3)}{1 - 0} = \frac{3}{1} = 3$$

9. 3

10. y = 3x + 7; Possible answer: Since the slope of line *m* is 3, its equation has the form y = 3x + b. Substitute the coordinates (-2, 1) in the equation for *x* and *y* to obtain the result b = 7.

LESSON 2-2

Practice and Problem Solving: A/B

1. Yes; Possible answer: The slopes of the lines are -4 and $\frac{1}{4}$. The product of the slopes of

the lines is -1. Two non-vertical lines are perpendicular if and only if the product of their slopes is -1.

2. $-\frac{1}{3}$

3. undefined slope (The segment is vertical.)

4.
$$-\frac{1}{3}$$

5.3

6. No; Possible answer: \overline{WX} and \overline{YZ} are parallel and both are perpendicular to \overline{ZW} . However, \overline{XY} is not parallel to \overline{ZW} . So, the figure is a trapezoid.

7.
$$-\frac{3}{2}$$

8. Possible answer: (0, 3) and (2, 0) are two points on the line.

slope
$$=\frac{3-0}{0-2} = \frac{3}{-2} = -\frac{3}{2}$$

9. $\frac{2}{3}$
10. $y = \frac{2}{3}x - 3$; Possible answer: The slope, *m*, is $\frac{2}{3}$. The *y*-intercept, *b*, is -3. The equation, $y = mx + b$, is $y = \frac{2}{3}x - 3$.

LESSON 2-3

Practice and Problem Solving: A/B

- 3. D(4, 0); E(6, 5); F(2, 5)
- 4. $DE = \sqrt{29}$; $DF = \sqrt{29}$
- 5. You would need to use the coordinates shown and the distance formula to show that the length of \overline{FE} is half the length of \overline{AB} .

LESSON 2-4

(0, -4)

Practice and Problem Solving: A/B

1. Possible answer:

2. Possible answer:

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

- 3. Possible answer: Use the slope formula to determine the slope of each side. The top and bottom segments have a slope of 0. The segment on the left has a slope of 4, and the segment on the right has a slope of –4. Since exactly two sides have the same slope, the quadrilateral is a trapezoid.
 - 4. Possible answer: *ABCD* is a rectangle with width *AD* and length *DC*. The area of *ABCD* is

(AD)(DC) or (4)(6) = 24 square units. By the Midpoint Formula, the coordinates of *E* are $\left(\frac{0+6}{2}, \frac{0+0}{2}\right)$

= (3,0) and the coordinates of *F* are $\left(\frac{0+0}{2}, \frac{0+4}{2}\right)$ = (0, 2). The *x*-coordinate of *E* is the length of

rectangle *DEGF*, and the y-coordinate of F is the width. So the area of *DEGF* is (3)(2) = 6 square units.

Since $6 = \frac{1}{4}(24)$, the area of rectangle *DEGF* is one-fourth the area of rectangle *ABCD*.

LESSON 2-5

Practice and Problem Solving: A/B

1. kite; $P \approx 15.2$ units; A = 12 units²

2. trapezoid; $P \approx 20.3$ units; A = 21 units²

3. scalene triangle; $P \approx 15.2$ units; A = 7 units²

Original content Copyright © by Houghton Mifflin Harcourt. Additions and changes to the original content are the responsibility of the instructor.

4. rectangle; $P \approx 14.1$ units; A = 12 units²

- 5. $P \approx 23.6$ units; A = 38 units²
- 6. $P \approx 25.1$ units; A = 34.5 units²