\qquad

Please do all your work on a separate piece of paper. Please show all setup and work!

Find the domain of the function.

1. $f(x)=\sqrt[4]{1-x^{2}}$

Describe the transformations that occur in the function. Then sketch its graph.
2. $f(x)=(x-1)^{3}+2$
3. $f(x)=-(x+10)^{2}+5$

Write an equation for the function that is described by the given characteristics.
4. The shape of $(x)=x^{2}$, but moved 3 units to the left, 7 units up, and reflected in the x-axis.
5. The shape of $f(x)=\sqrt{x}$, but moved 6 units to the left, and reflected in both the x-axis and the y-axis.
6. The shape of $f(x)=x^{3}$, but moved 13 units to the right.

Find $(a)(f+g)(x),(b)(f-g)(x),(c)(f g)(x), \quad(d)\left(\frac{f}{g}\right)(x)$
7. $f(x)=x^{2}, g(x)=2-x$

Evaluate the indicated function for $f(x)=x^{2}+1$ and $g(x)=x-4$
8. $(f-g)(3 t)$
9. $(f+g)(2)$

Find (a) $f \circ g,(b) g \circ f,(c) f \circ f$.
10. $f(x)=x^{3}, \quad g(x)=\frac{1}{x}$

Find (a) $f \circ g$, (b) $g \circ f$, Find the domain of each function and each composite function (A total of 4 domains)
11. $f(x)=|x|, \quad g(x)=x+6$
12. $f(x)=\frac{3}{x^{2}-1}, g(x)=x+1$

Show that f and g are inverse functions.
13. $f(x)=5 x+1, g(x)=\frac{x-1}{5}$
14. $f(x)=1-x^{3}, g(x)=\sqrt[3]{1-x}$

Find the inverse of the function f .
15. $f(x)=2 x-3$
16. $f(x)=x^{3}+1$
17. $f(x)=\frac{4}{x}$

