\qquad

Sketch the graph of the quadratic function without using a graphing utility. Identify the vertex and x intercepts.

1. $f(x)=x^{2}+2 x+1$

Find the quadratic function that has the indicated vertex and whose graph passes through the given point.
2. Vertex: $\left(\frac{5}{2},-\frac{3}{4}\right)$ Point: $(-2,4)$

Word problem

3. The height y (in feet) of a ball thrown by a child is $y=-\frac{1}{12} x^{2}+2 x+4$ where x is the horizontal distance (in feet) from the point at which the ball is thrown.
a. How high is the ball when it leaves the child's hand? (Hint: Find y when $x=0$)
b. What is the maximum height of the ball?
c. How far from the child does the ball strike the ground?

Use long division to divide.
4. $\left(4 x^{3}-7 x^{2}-11 x+5\right) \div(4 x+5)$

Use synthetic division to divide.
5. $\left(3 x^{3}-16 x^{2}-72\right) \div(x-6)$

Use synthetic division to show that x is a solution of the third-degree polynomial equation, and use the result to factor the polynomial completely. List all the real zeros of the function.
6. $x^{3}-28 x-48=0 \quad x=-4$
7. $x^{3}-3 x^{2}+2=0 \quad x=1 \pm \sqrt{3}$
(a) Verify the given factors of $f(x)$, (b) find the remaining factors of $f(x)$, (c) use your results to write the complete factorization of $f(x)$, (d) list all real zeros of $f(x)$.

$$
\text { 8. } \begin{aligned}
f(x)= & x^{4}-4 x^{3}-15 x^{2}+58 x-40 \\
& \text { factors: }(x-5)(x+4)
\end{aligned}
$$

(a) List the possible rational zeros of $f(x)$, (b) determine all the real zeros of \boldsymbol{f}.
9. $f(x)=x^{3}+x^{2}-4 x-4$
10. $f(x)=4 x^{3}-12 x^{2}-x+15$

Find a polynomial function with integer coefficients that has the given zeros.
11. $1,5 i,-5 i$

Use the given zero to find all the zeros of the function.
12. $f(x)=2 x^{3}+3 x^{2}+50 x+75$; zero: $5 i$
13. $f(x)=x^{3}-7 x^{2}-x+87$; zero: $5+2 i$

Use Descartes's Rule of Signs to determine the possible number of positive and negative zeros of the function.
14. $g(x)=5 x^{5}+10 x$
15. $f(x)=3 x^{3}+2 x^{2}+x+3$

Word problem

16. A company that manufactures bicycles estimates that the profit for selling a particular model is $P=-45 x^{3}+2500 x^{2}-275,000$; if $0 \leq x \leq 50$ where P is the profit (in dollars) and x is the advertising expense (in tens of thousands of dollars). Using this model, find the smaller of two advertising amounts that yield a profit of $\$ 800,000$.
