ANALYSIS PDF

Regression analysis in MiniTab- salary in millions= 141-18.3 height in feet

Method- the method i used for collecting the data for this data analysis was through nba.com to find out all the starting centers in the NBA in 2017 and then i used ESPN to obtain all of these players heights, and finally i went back to nba.com to find all of their salaries. I used minitab to then use height as one variable and their salary as the other, discovering a very low correlation coefficient.

Purpose- the purpose of this study was to see if the height of a certain basketball position, in the case the center, affected the salary at which they were paid.

Sample- the sample size was the starting centers of all nba teams, whereas the population would be all centers in the NBA, not just the starters. I obtained my sample at ESPN.com where they had all the starters for all 30 teams, making my sample size 30 people.

Summary- there is no correlation between the height of centers and their salary because some of the centers that get paid the most are the shortest out of all of them and vise versa, some that are the tallest get paid the least.

Descriptive statistic-Descriptive Statistics: height(in feet), salary (in millions) Statistics

salary (in	き	0	1	1.5	8.	1.72	4.	14	2
millions)	C		3.	5	5		9	.2	2.
			3		0		2	8	1
			9						2

	Maxi mu m
Variable	7.08
height(in feet)	00
salary (in millions)	26.5

