A1. Basic Reviews

PERMUTATIONS and COMBINATIONS... or "HOW TO COUNT"

Question 1: Suppose we wish to arrange $n=5$ people $\{a, b, c, d, e\}$, standing side by side, for a portrait. How many such distinct portraits ("permutations") are possible?

Solution: There are 5 possible choices for which person stands in the first position (either a, b, c, d, or e). For each of these five possibilities, there are 4 possible choices left for who is in the next position. For each of these four possibilities, there are 3 possible choices left for the next position, and so on. Therefore, there are $5 \times 4 \times 3 \times 2 \times 1=120$ distinct permutations. See Table 1.

This number, $5 \times 4 \times 3 \times 2 \times 1$ (or equivalently, $1 \times 2 \times 3 \times 4 \times 5$), is denoted by the symbol " 5 !" and read " 5 factorial", so we can write the answer succinctly as $5!=120$.

In general,
FACT 1: The number of distinct PERMUTATIONS of n objects is " n factorial", denoted by

$$
\begin{aligned}
n! & =1 \times 2 \times 3 \times \ldots \times n, \text { or equivalently, } \\
& =n \times(n-1) \times(n-2) \times \ldots \times 2 \times 1
\end{aligned}
$$

Examples: 6! $=6 \times 5 \times 4 \times 3 \times 2 \times 1$
$=6 \times 5!$
$=6 \times 120$ (by previous calculation)
$=720$
$3!=3 \times 2 \times 1=6$
$2!=2 \times 1=2$
$1!=1$
$0!=1$, BY CONVENTION (It may not be obvious why, but there are good mathematical reasons for it.)

Question 2: Now suppose we start with the same $n=5$ people $\{a, b, c, d, e\}$, but we wish to make portraits of only $k=3$ of them at a time. How many such distinct portraits are possible?

$$
\begin{aligned}
& \text { Again, as above, every different } \\
& \text { ordering counts as a distinct } \\
& \text { permutation. For instance, the } \\
& \text { ordering (a,b,c) is distinct from } \\
& (c, a, b) \text {, etc. }
\end{aligned}
$$

Solution: By using exactly the same reasoning as before, there are $5 \times 4 \times 3=60$ permutations.

Note that this is technically NOT considered a factorial (since we don't go all the way down to 1), but we can express it as a ratio of factorials:

$$
5 \times 4 \times 3=\frac{5 \times 4 \times 3 \times(2 \times 1)}{(2 \times 1)}=\frac{5!}{2!} .
$$

In general,
FACT 2: The number of distinct PERMUTATIONS of n objects, taken k at a time, is given by the ratio

$$
\frac{n!}{(n-k)!}=\overbrace{n \times(n-1) \times(n-2) \times \ldots \times(n-k+1)} \text {. }
$$

Question 3: Finally suppose that instead of portraits ("permutations"), we wish to form committees ("combinations") of $k=3$ people from the original $n=5$. How many such distinct committees are possible?

Example:

Now, every different ordering does NOT count as a distinct combination. For instance, the committee $\{a, b, c\}$ is the same as the committee $\{c, a, b\}$, etc.

Solution: This time the reasoning is a little subtler. From the previous calculation, we know that \# of permutations of $k=3$ from $n=5$ is equal to $\frac{5!}{2!}=60$.

But now, all the ordered permutations of any three people (and there are $3!=6$ of them, by FACT 1), will "collapse" into one single unordered combination, e.g., $\{a, b, c\}$, as illustrated. So...
\# of combinations of $k=3$ from $n=5$ is equal to $\frac{5!}{2!}$, divided by 3!, i.e., $60 \div 6=10$.

5
See Table 3 for the explicit list!
This number, $\frac{5!}{3!2!}$, is given the compact notation $\binom{5}{3}$, read "5 choose 3 ", and corresponds to the number of ways of selecting 3 objects from 5 objects, regardless of their order. Hence $\binom{5}{3}=10$.

In general,
FACT 3: The number of distinct COMBINATIONS of n objects, taken k at a time, is given by the ratio

$$
\frac{n!}{k!(n-k)!}=\frac{n \times(n-1) \times(n-2) \times \ldots \times(n-k+1)}{k!} .
$$

This quantity is usually written as $\binom{n}{k}$, and read " n choose k ".

Examples: $\binom{5}{3}=\frac{5!}{3!2!}=10$, just done. Note that this is also equal to $\binom{5}{2}=\frac{5!}{2!3!}=10$.

$$
\begin{aligned}
& \binom{8}{2}=\frac{8!}{2!6!}=\frac{8 \times 7 \times 6!}{2!\times 6!}=\frac{8 \times 7}{2}=28 \text {. Note that this is equal to }\binom{8}{6}=\frac{8!}{6!2!}=28 . \\
& \binom{15}{1}=\frac{15!}{1!14!}=\frac{15 \times 14!}{1!\times 14!}=15 . \text { Note that this is equal to }\binom{15}{14}=15 \text {. Why? } \\
& \binom{7}{7}=\frac{7!}{7!0!}=1 . \quad(\text { Recall that } 0!=1 .) \text { Note that this is equal to }\binom{7}{0}=1 \text {. Why? }
\end{aligned}
$$

Observe that it is neither necessary nor advisable to compute the factorials of large numbers directly. For instance, $8!=40320$, but by writing it instead as $8 \times 7 \times 6!$, we can cancel $6!$, leaving only 8×7 above. Likewise, 14 ! cancels out of 15 !, leaving only 15 , so we avoid having to compute 15 !, etc.

Remark: $\binom{n}{k}$ is sometimes called a "combinatorial symbol" or "binomial coefficient" (in connection with a fundamental mathematical result called the Binomial Theorem; you may also recall the related "Pascal's Triangle"). The previous examples also show that binomial coefficients possess a useful symmetry, namely, $\binom{n}{k}=\binom{n}{n-k}$. For example, $\binom{5}{3}=\frac{5!}{3!2!}$, but this is clearly the same as $\binom{5}{2}=\frac{5!}{2!3!}$. In other words, the number of ways of choosing 3-person committees from 5 people is equal to the number of ways of choosing 2-person committees from 5 people. A quick way to see this without any calculating is through the insight that every choice of a 3person committee from a collection of 5 people leaves behind a 2-person committee, so the total number of both types of committee must be equal (10).

Exercise: List all the ways of choosing 2 objects from 5, say $\{a, b, c, d, e\}$, and check these claims explicitly. That is, match each pair with its complementary triple in the list of Table 3.

A Simple Combinatorial Application

Suppose you toss a coin $n=5$ times in a row. How many ways can you end up with $k=3$ heads?
Solution: The answer can be obtained by calculating the number of ways of rearranging 3 objects among 5; it only remains to determine whether we need to use permutations or combinations. Suppose, for example, that the 3 heads occur in the first three tosses, say a, b, and c, as shown below. Clearly, rearranging these three letters in a different order would not result in a different outcome. Therefore, different orderings of the letters a, b, and c should not count as distinct permutations, and likewise for any other choice of three letters among $\{a, b, c, d, e\}$. Hence, there are $\binom{5}{3}=10$ ways of obtaining $k=3$ heads in $n=5$ independent successive tosses.

Exercise: Let "H" denote heads, and "T" denote tails. Using these symbols, construct the explicit list of 10 combinations. (Suggestion: Arrange this list of H/T sequences in alphabetical order. You should see that in each case, the three H positions match up exactly with each ordered triple in the list of Table 3. Why?)

Table 1 - Permutations of $\{a, b, c, d, e\}$
These are the $5!=120$ ways of arranging 5 objects, in such a way that all the different orders count as being distinct.

a b c	b a c d e	c a b d e	d a b c e	e a b c d
$\mathrm{a} b \mathrm{c} e \mathrm{~d}$	b a ced	$c \mathrm{a} \mathrm{b} \mathrm{e} \mathrm{d}$	d a b e c	e a b d c
ab d c e	b a d c e	$c \mathrm{ad} \mathrm{b} \mathrm{e}$	d a c b e	e a c b d
ab dec	b a d e c	c a d e b	d a c e b	e a c d b
$\mathrm{ab} e \mathrm{c} d$	b a e c d	$c \mathrm{a} \mathrm{e} \mathrm{b} \mathrm{d}$	d a e b c	$e \mathrm{a} \mathrm{d} \mathrm{b} \mathrm{c}$
$\mathrm{a} b \mathrm{ed} \mathrm{c}$	b a edc	c a ed b	d a e c b	e a d c b
$\mathrm{ac} b \mathrm{de}$	b c a d e	$c \mathrm{~b} a \mathrm{~d} e$	d b a c e	e b a c d
ac bed	b c a ed	$c \mathrm{~b} a \mathrm{ed}$	d b a e c	e b a d c
a c d b e	b c d a e	$c \mathrm{~b} d \mathrm{a} e$	d b c a e	e b c a d
$\mathrm{ac} d \mathrm{e}$ b	b c de a	$c \mathrm{~b} d \mathrm{e} a$	d b c e a	$e \mathrm{~b}$ c d a
$\mathrm{a} c \mathrm{e}$ b d	b c e a d	$c \mathrm{~b} e \mathrm{a} \mathrm{d}$	d b e a c	$e \mathrm{~b} d \mathrm{a}$
a ced b	b c ed a	$c \mathrm{~b}$ e d a	d b e c a	$e \mathrm{~b} d \mathrm{c} a$
ad b c e	b d a ce	c d a b e	d c a b e	e c a b d
ad b e c	b d a e c	$c d a \mathrm{e}$ b	d c a e b	e c a d b
adc b e	b d c a e	$c \mathrm{~d} b \mathrm{a} e$	d c b a e	$e \mathrm{c}$ b a d
adce b	b d c e a	$c \mathrm{~d} b \mathrm{e} a$	d c b e a	$e \mathrm{c} b \mathrm{~d} a$
a d e b c	b de a c	c d e a d	d c e a b	e c d a b
adec b	b de c a	$c \mathrm{de} \mathrm{d} \mathrm{a}$	d c e b a	e c d b a
a e b c d	b e a c d	$c \mathrm{e} a \mathrm{~b}$ d	d e a b c	e d a b c
$\mathrm{a} e \mathrm{~b} d \mathrm{c}$	b e a d c	$c e a d d b$	deacb	$e d \mathrm{a} \mathrm{c} \mathrm{b}$
$\mathrm{a} e \mathrm{c}$ b d	b e c a d	$c \mathrm{e} b \mathrm{ad}$	d e b a c	e d b a c
$\mathrm{a} e \mathrm{c} d \mathrm{~b}$	b ecda	$c \mathrm{e} b \mathrm{~d} a$	d e b c a	e d b c a
$\mathrm{a} e \mathrm{~d} \mathrm{~b}$ c	b edac	$c e d \mathrm{a} b$	d e c a b	e d c a b
$\mathrm{a} e \mathrm{dc}$ b	b edc a	$c \mathrm{ed} \mathrm{b} \mathrm{a}$	d e c b a	e d c

Table 2 - Permutations of $\{a, b, c, d, e\}$, taken 3 at a time
These are the $\frac{5!}{2!}=60$ ways of arranging 3 objects among 5 , in such a way that different orders of any triple count as being distinct, e.g., the $3!=6$ permutations of (a, b, c), shown below .

$\frac{a b c}{a b d}$	$\frac{b a c}{b a d}$	$\frac{c a b}{c a d}$	$\mathrm{d} a \mathrm{~b}$	$\mathrm{e} a \mathrm{~b}$
a b e	b a e	c a e	d a e	e a d
acb	b c a	c b a	d b a	e b a
a c d	b c d	c b d	d b c	e b c
a c e	b c e	c b e	d b e	e b d
a d b	b d a	c d a	d c a	e c a
a d c	b d c	c d b	d c b	e c b
a d e	b d e	c d e	d c e	e c d
$\mathrm{a} e \mathrm{~b}$	b e a	$c \mathrm{e} a$	d e a	e d a
a ec	b e c	c e b	d e b	e d b
a ed	b e d	$c \mathrm{ed}$	d e c	e d c

Table 3 - Combinations of $\{a, b, c, d, e\}$, taken 3 at a time

If different orders of the same triple are not counted as being distinct, then their six permutations are lumped as one, e.g., $\{a, b, c\}$. Therefore, the total number of combinations is $\frac{1}{6}$ of the original 60 , or 10. Notationally, we express this as $\frac{1}{3!}$ of the original $\frac{5!}{2!}$, i.e., $\frac{5!}{3!2!}$, or more neatly, as $\binom{5}{3}$. These $\binom{5}{3}=10$ combinations are listed below.

| a | b | c |
| :--- | :--- | :--- | :--- |
| a | b | d |
| a | b | e |
| a | c | d |
| a | c | e |
| a | d | e |
| b | c | d |
| b | c | e |
| b | d | e |
| c | d | e |

