For 1-5, express the 68-95-99.7 Property in terms of a normal distribution with the following parameters:

1. 68%, mean $\mu=25$ and standard deviation $\sigma=3$
2. 68%, mean $\mu=300$ and standard deviation $\sigma=50$
3. 95%, mean $\mu=75$ and standard deviation $\sigma=5$
4. 95%, mean $\mu=4.5$ and standard deviation $\sigma=0.2$
5. 99.7%, mean $\mu=0$ and standard deviation $\sigma=1$

For 6-10, consider the normal random variable X with mean $\mu=75$ and standard deviation $\sigma=5$.
6. Find the probability that X assumes a value within one standard deviation of $\mu=75$.
7. Find the probability that X assumes a value within two standard deviations of $\mu=75$.
8. Find the probability that X assumes a value more than one standard deviation above $\mu=75$.
9. Find the probability that X assumes a value more than two standard deviations below $\mu=75$.
10. Find the probability that X assumes a value more than three standard deviations away from $\mu=75$.

For 11-15, find the indicated probabilities for the normal random variable X with mean $\mu=300$ and standard deviation $\sigma=20$.
11. $P(260<X<340)$
12. $P(240<X<360)$
13. $1-P(260<X<340)$
14. $P(X<300)$
15. $P(X>300)$

For 15-20, find the indicated probabilities for the normal random variable X with mean $\mu=0$ and standard deviation $\sigma=1$.
16. $P(-1<X<1)$
17. $P(-2<X<2)$
18. $P(-3<X<3)$
19. $P(X<0)$
20. $P(X>0)$

