Section 5.4 The Normal Distribution

For 1–5, express the **68-95-99.7 Property** in terms of a normal distribution with the following parameters:

- 1. 68%, mean μ = 25 and standard deviation σ = 3
- 2. 68%, mean μ = 300 and standard deviation σ = 50
- 3. 95%, mean μ = 75 and standard deviation σ = 5
- 4. 95%, mean μ = 4.5 and standard deviation σ = 0.2
- 5. 99.7%, mean μ = 0 and standard deviation σ = 1

For 6–10, consider the normal random variable X with mean μ = 75 and standard deviation σ = 5.

- 6. Find the probability that X assumes a value within one standard deviation of $\mu = 75$.
- 7. Find the probability that *X* assumes a value within two standard deviations of $\mu = 75$.
- 8. Find the probability that X assumes a value more than one standard deviation above $\mu = 75$.
- 9. Find the probability that X assumes a value more than two standard deviations below $\mu = 75$.
- 10. Find the probability that X assumes a value more than three standard deviations away from $\mu = 75$.

Introductory	Statistics
--------------	------------

Section 5.4 The Normal Distribution

Name:

For 11–15, find the indicated probabilities for the normal random variable X with mean μ = 300 and standard deviation σ = 20.

- 11. P(260 < X < 340)
- 12. P(240 < X < 360)
- 13. 1 P(260 < X < 340)
- 14. P(X < 300)
- 15. P(X > 300)

For 15–20, find the indicated probabilities for the normal random variable X with mean μ = 0 and standard deviation σ = 1.

- 16. P(-1 < X < 1)
- 17. P(-2 < X < 2)
- 18. P(-3 < X < 3)
- 19. P(X < 0)
- 20. P(X > 0)