Section 5.4d M&M Distributions & Statistics

Name:

After being given a pack of M&Ms we are going to do some statistical analysis of the color distributions. You will each be given one 1.69 ounces bag of M&Ms. First, count the total number of candies and record your result. Then you will sort the candies by color and record each of their results. Record the % of each pack by dividing the quantity observed by the total number of candies (round to 2 decimal places). For example: 16 blues candies from a bag of 58 candies - 16/58 = 0.27586 -> rounds to 0.28. Then check if the value falls within 1 or 2 standard deviations of our mean (the analysis from the previous day.

	Blue	Brown	Green	Orange	Red	Yellow
Quantity Observed						
% of Pack						
Within ±1σ						
Within $\pm 2\sigma$						

Number of M&Ms	

Class Analysis	Mean	St. Dev.	95%
Number of M&Ms			< µ <
Blue			< µ <
Brown			< µ <
Green			< µ <
Orange			< µ <
Red			< µ <
Yellow			< µ <

Section 5.4d M&M Distributions & Statistics

Name:_____

Number of M&Ms	Blue	Brown	Green	Orange	Red	Yellow