Bivariate Data Project

Regression Analysis: shoe size versus height(in)

Analysis of Variance

	D	Adj		F-Valu	P-Valu
Source	F	SS	Adj MS	е	е
Regression	1	197.8 4	197.84 1	112.65	0.000
height(in)	1	197.8 4	197.84 1	112.65	0.000
Error	48	84.30	1.756		
Lack-of-Fit	18	45.31	2.517	1.94	0.053
Pure Error	30	38.99	1.300		
Total	49	282.1 4			

Model Summary

		R-sq(adj	R-sq(pred
S	R-sq))
1.3252	70.12	69.50%	66.35%
6	%		

Coefficients

		SE		P-Valu	
Term	Coef	Coef	T-Value	е	VIF
Constant	-10.38	1.78	-5.84	0.000	
height(in)	0.279	0.0263	10.61	0.000	1.0
	5				0

Regression Equation

shoe = -10.38 + 0.2795 height(in) size

Fits and Diagnostics for Unusual Observations

Ob	shoe			Std		
s	size	Fit	Resid	Resid		
2	11.000	8.351	2.649	2.02	R	

Χ		1.31	1.622	3.878	5.500	12
	R	2.43	3.133	10.86	14.000	18
				7		
X	R	2.22	2.578	1.922	4.500	35
Χ		-0.08	-0.10	13.10	13.000	43
			3	3		

R Large residual

X Unusual X

Method of Findings: For this experiment I conducted my own research instead of finding data from a previous experiment. To find my data I measured the height of people and recorded the size of their shoe. I used the same tape measure for each participant and used a random sample from people at work and at school there was no sample bias.

<u>Purpose:</u> The purpose of this experiment is to show the relationship between height and shoe size.

<u>Sample Used</u>: To eliminate sample bias I chose random people from more than one location with different ages, genders, and races for a more variety in results.

Original Data:

height(in)	shoe size
64	9.5
67	11
66	6
63	6
76	12
75	12
68	8.5
69	8
62	7.5
53	6

72	10
51	5.5
66	6
66	7.5
64	6.5
67	9
77	11
76	14
76	12
62	5
69	8.5
66	8.5
68	7
62	5
65	6.5
57	5
63	7
65	8
72	9.5
68	9.5
73	10
73	12
72	10
65	6

	_
44	4.5
66	6.5
64	8
63	6.5
63	8.5
78	12.5
75	10
77	11
84	13
64	7
64	7.5
72	8
62	6
64	6
65	8.5
74	10.5