Factoring Methods Checklist

1. Greatest Common Factor (GCF)

Example	$14x^4 - 21x^2$	$14x^4 = 2 \cdot 7 \cdot x \cdot x \cdot x \cdot x$
	$= 7x^{2}(2x^{2} - 3)$	$21x^2 = 3 \cdot 7 \cdot x \cdot x$
		$GCF = 7x^2$

Note: Divide each term by the GCF- check by distributing

2. Difference of Squares (2 terms, sign is always negative)

Examples	x ² – 64 9x ² – 49	(x + 8) (x - 8) (3x + 7) (3x - 7)

Note: Find the square root of each term

Pattern (+)(-)

3. Perfect Square Trinomials (PST) (3 terms, constant is positive)

Pattern	(+)2	or	(-)2
Examples	16 x ²	x ² + - 4:	- 24x + x + 4	+9			$(4x + 3)^2$ $(x - 2)^2$

Note: Find the square root of the 1st and 3rd term - Be sure to check middle term $4x \cdot 3 \cdot 2 = 24x$ $x \cdot -2 \cdot 2 = -4x$

4. Trinomial Factoring

8.1 $x^2 + bx + c$ 8.2 $ax^2 + bx + c$ 3x² − 4x − 7 Examples $x^2 - 5x + 6$ (x)(x) (3x)(x) Factors of -7 Factors of 6 Factors of 3 1,6 2,3 1, 3 1, -7 -1, -6 -2, -3 -1,7 (x - 2)(x - 3)(3x - 7)(x + 1)

Note: FOIL to check correct factorization

5. Grouping (typically 4 or 5 terms)

Example $x^3 + 2x^2 + 3x + 6$

$x^3 + 2x^2 + 3x + 6$	or	$x^3 + 3x + 2x^2 + 6$
GCF $x^{2}(x+2) + 3(x+2)$		GCF x (x ² + 3) + 2 (x ² + 3)
$(x^2 + 3) (x + 2)$		$(x + 2)(x^2 + 3)$

Note: Use a pattern to group terms together and find the GCF of each "group" – several patterns may work for a given expression

Solving a Factored Equation

Set each quantity equal to zero and solve for the variable

(4x + 1)(4x - 1) = 0 4x + 1 = 0 4x - 1 = 0 4x = 1 $x = -\frac{1}{4}$ $x = \frac{1}{4}$